AI model downtime can significantly impact your applications and user experience. This guide provides practical steps and procedures for effectively handling AI model downtime when it occurs.
Understanding AI Model Downtime
Common Causes of Downtime
- Provider Service Outages: API provider infrastructure issues
- Rate Limiting: Exceeding API rate limits
- Authentication Failures: Expired or invalid API keys
- Network Issues: Connectivity problems between your system and providers
- Quota Exhaustion: Monthly or daily usage limits reached
- Model-Specific Issues: Problems with specific AI models
Impact Assessment
Before implementing solutions, understand the impact:
class DowntimeImpactAnalyzer:
def __init__(self):
self.impact_levels = {
'critical': 'Complete service failure',
'high': 'Major functionality affected',
'medium': 'Some features degraded',
'low': 'Minor inconvenience'
}
def assess_impact(self, affected_services: List[str], user_count: int) -> Dict:
"""Assess the impact of downtime"""
impact = {
'level': 'low',
'affected_services': affected_services,
'user_count': user_count,
'estimated_downtime': 0,
'business_impact': 'minimal'
}
# Determine impact level based on affected services
if len(affected_services) > 3 or user_count > 10000:
impact['level'] = 'critical'
elif len(affected_services) > 1 or user_count > 1000:
impact['level'] = 'high'
elif user_count > 100:
impact['level'] = 'medium'
return impact
Immediate Response Procedures
1. Incident Detection and Alerting
import time
from typing import Dict, List, Optional
class DowntimeDetector:
def __init__(self, providers: List[str]):
self.providers = providers
self.downtime_status = {provider: False for provider in providers}
self.downtime_start_time = {provider: None for provider in providers}
self.alert_sent = {provider: False for provider in providers}
async def check_provider_health(self, provider: str) -> bool:
"""Check if a provider is healthy"""
try:
# Simple health check
response = await self._make_health_check(provider)
return response.status_code == 200
except Exception as e:
print(f"Health check failed for {provider}: {e}")
return False
async def detect_downtime(self):
"""Continuously monitor for downtime"""
while True:
for provider in self.providers:
is_healthy = await self.check_provider_health(provider)
if not is_healthy and not self.downtime_status[provider]:
# Downtime detected
self.downtime_status[provider] = True
self.downtime_start_time[provider] = time.time()
await self._handle_downtime_start(provider)
elif is_healthy and self.downtime_status[provider]:
# Recovery detected
downtime_duration = time.time() - self.downtime_start_time[provider]
await self._handle_recovery(provider, downtime_duration)
self.downtime_status[provider] = False
self.downtime_start_time[provider] = None
self.alert_sent[provider] = False
await asyncio.sleep(30) # Check every 30 seconds
async def _handle_downtime_start(self, provider: str):
"""Handle the start of downtime"""
print(f"🚨 Downtime detected for {provider}")
# Send immediate alert
await self._send_alert(provider, "downtime_start")
# Activate failover
await self._activate_failover(provider)
async def _handle_recovery(self, provider: str, duration: float):
"""Handle provider recovery"""
print(f"✅ {provider} recovered after {duration:.2f} seconds")
# Send recovery alert
await self._send_alert(provider, "recovery", duration)
# Deactivate failover
await self._deactivate_failover(provider)
2. Incident Response Team Activation
class IncidentResponseTeam:
def __init__(self):
self.team_members = {
'incident_commander': 'tech-lead@company.com',
'technical_lead': 'senior-dev@company.com',
'communications': 'comms@company.com',
'business_impact': 'product-manager@company.com'
}
self.escalation_levels = {
'level1': ['technical_lead'],
'level2': ['incident_commander', 'communications'],
'level3': ['business_impact', 'executive']
}
async def activate_response_team(self, impact_level: str, provider: str):
"""Activate the appropriate response team"""
print(f"🚨 Activating incident response team for {provider}")
# Determine escalation level
if impact_level == 'critical':
team_members = self.escalation_levels['level3']
elif impact_level == 'high':
team_members = self.escalation_levels['level2']
else:
team_members = self.escalation_levels['level1']
# Notify team members
for role in team_members:
await self._notify_team_member(role, provider, impact_level)
# Create incident ticket
incident_id = await self._create_incident_ticket(provider, impact_level)
return incident_id
async def _notify_team_member(self, role: str, provider: str, impact_level: str):
"""Notify a team member about the incident"""
email = self.team_members.get(role)
if email:
message = f"""
INCIDENT ALERT
Provider: {provider}
Impact Level: {impact_level}
Time: {time.strftime('%Y-%m-%d %H:%M:%S')}
Please check the incident dashboard for details.
"""
# Send notification (implement based on your notification system)
print(f"📧 Notifying {role} at {email}")
Troubleshooting Procedures
1. Diagnostic Checklist
class DowntimeDiagnostics:
def __init__(self):
self.diagnostic_steps = [
'check_network_connectivity',
'verify_api_credentials',
'check_rate_limits',
'verify_quota_status',
'test_provider_status',
'check_application_logs'
]
async def run_diagnostics(self, provider: str) -> Dict:
"""Run comprehensive diagnostics"""
results = {
'provider': provider,
'timestamp': time.time(),
'diagnostics': {},
'root_cause': None,
'recommendations': []
}
for step in self.diagnostic_steps:
try:
step_result = await getattr(self, step)(provider)
results['diagnostics'][step] = step_result
if step_result['status'] == 'failed':
results['root_cause'] = step_result['issue']
results['recommendations'].extend(step_result['recommendations'])
except Exception as e:
results['diagnostics'][step] = {
'status': 'error',
'error': str(e)
}
return results
async def check_network_connectivity(self, provider: str) -> Dict:
"""Check network connectivity to provider"""
try:
# Test basic connectivity
response = await self._ping_provider(provider)
if response['success']:
return {
'status': 'passed',
'latency': response['latency']
}
else:
return {
'status': 'failed',
'issue': 'Network connectivity problem',
'recommendations': [
'Check firewall settings',
'Verify DNS resolution',
'Test from different network'
]
}
except Exception as e:
return {
'status': 'failed',
'issue': f'Connectivity test failed: {e}',
'recommendations': ['Contact network administrator']
}
async def verify_api_credentials(self, provider: str) -> Dict:
"""Verify API credentials are valid"""
try:
# Test API key validity
is_valid = await self._test_api_key(provider)
if is_valid:
return {'status': 'passed'}
else:
return {
'status': 'failed',
'issue': 'Invalid or expired API credentials',
'recommendations': [
'Rotate API keys',
'Check key permissions',
'Verify key format'
]
}
except Exception as e:
return {
'status': 'failed',
'issue': f'Credential verification failed: {e}',
'recommendations': ['Check credential configuration']
}
async def check_rate_limits(self, provider: str) -> Dict:
"""Check if rate limits are being exceeded"""
try:
rate_limit_status = await self._get_rate_limit_status(provider)
if rate_limit_status['within_limits']:
return {
'status': 'passed',
'remaining_requests': rate_limit_status['remaining']
}
else:
return {
'status': 'failed',
'issue': 'Rate limit exceeded',
'recommendations': [
'Implement request throttling',
'Add request queuing',
'Use multiple API keys'
]
}
except Exception as e:
return {
'status': 'failed',
'issue': f'Rate limit check failed: {e}',
'recommendations': ['Check rate limit configuration']
}
2. Automated Recovery Procedures
class AutomatedRecovery:
def __init__(self, providers: List[str]):
self.providers = providers
self.failover_config = self._load_failover_config()
async def execute_recovery_procedures(self, provider: str, issue_type: str):
"""Execute automated recovery procedures"""
print(f"🔄 Executing recovery procedures for {provider}")
recovery_steps = self._get_recovery_steps(issue_type)
for step in recovery_steps:
try:
result = await self._execute_step(step, provider)
if result['success']:
print(f"✅ {step['name']} completed successfully")
# Check if issue is resolved
if await self._is_issue_resolved(provider):
print(f"🎉 Issue resolved for {provider}")
return True
else:
print(f"❌ {step['name']} failed: {result['error']}")
except Exception as e:
print(f"❌ Recovery step {step['name']} failed: {e}")
return False
def _get_recovery_steps(self, issue_type: str) -> List[Dict]:
"""Get recovery steps based on issue type"""
recovery_procedures = {
'rate_limit': [
{'name': 'Switch to backup API key', 'action': 'rotate_api_key'},
{'name': 'Enable request throttling', 'action': 'enable_throttling'},
{'name': 'Activate failover provider', 'action': 'activate_failover'}
],
'authentication': [
{'name': 'Refresh API credentials', 'action': 'refresh_credentials'},
{'name': 'Switch to backup credentials', 'action': 'switch_credentials'},
{'name': 'Activate failover provider', 'action': 'activate_failover'}
],
'network': [
{'name': 'Retry with exponential backoff', 'action': 'retry_with_backoff'},
{'name': 'Switch to backup endpoint', 'action': 'switch_endpoint'},
{'name': 'Activate failover provider', 'action': 'activate_failover'}
],
'quota_exceeded': [
{'name': 'Switch to cost-effective model', 'action': 'switch_model'},
{'name': 'Activate caching layer', 'action': 'enable_caching'},
{'name': 'Activate failover provider', 'action': 'activate_failover'}
]
}
return recovery_procedures.get(issue_type, [
{'name': 'Activate failover provider', 'action': 'activate_failover'}
])
Communication and Status Updates
1. Status Page Management
class StatusPageManager:
def __init__(self):
self.status_levels = {
'operational': 'All systems operational',
'degraded': 'Some features may be slow or unavailable',
'outage': 'Service is down',
'maintenance': 'Scheduled maintenance in progress'
}
async def update_status_page(self, provider: str, status: str, message: str = None):
"""Update the status page"""
status_update = {
'provider': provider,
'status': status,
'message': message or self.status_levels.get(status, 'Unknown status'),
'timestamp': time.time(),
'updated_by': 'automated_system'
}
# Update status page (implement based on your status page system)
await self._publish_status_update(status_update)
print(f"📊 Status page updated: {provider} - {status}")
async def send_customer_notification(self, status: str, message: str):
"""Send notification to customers"""
notification = {
'type': 'status_update',
'status': status,
'message': message,
'timestamp': time.time()
}
# Send via email, Slack, etc.
await self._send_notification(notification)
2. Customer Communication Templates
class CommunicationTemplates:
def __init__(self):
self.templates = {
'downtime_start': {
'subject': 'Service Alert: AI Model Service Temporarily Unavailable',
'body': """
Dear Customer,
We are currently experiencing issues with our AI model service.
Our team is actively working to resolve this issue.
Impact: {impact_description}
Estimated Resolution: {estimated_time}
We apologize for any inconvenience and will provide updates as the situation progresses.
Best regards,
AI Service Team
"""
},
'downtime_update': {
'subject': 'Service Update: AI Model Service Status',
'body': """
Dear Customer,
Update on our AI model service status:
Current Status: {current_status}
Progress: {progress_update}
New Estimated Resolution: {new_estimated_time}
We appreciate your patience and will continue to provide updates.
Best regards,
AI Service Team
"""
},
'downtime_resolved': {
'subject': 'Service Restored: AI Model Service Back Online',
'body': """
Dear Customer,
Good news! Our AI model service has been restored and is fully operational.
Resolution Time: {resolution_time}
Root Cause: {root_cause}
Preventive Measures: {preventive_measures}
We apologize for the inconvenience and thank you for your patience.
Best regards,
AI Service Team
"""
}
}
def get_template(self, template_type: str, **kwargs) -> Dict:
"""Get a communication template with variables filled"""
template = self.templates.get(template_type, {})
if template:
return {
'subject': template['subject'],
'body': template['body'].format(**kwargs)
}
return {}
Post-Incident Procedures
1. Incident Documentation
class IncidentDocumentation:
def __init__(self):
self.incident_template = {
'incident_id': None,
'title': None,
'severity': None,
'start_time': None,
'end_time': None,
'duration': None,
'affected_services': [],
'root_cause': None,
'impact': {},
'resolution': {},
'lessons_learned': [],
'action_items': []
}
async def create_incident_report(self, incident_data: Dict) -> Dict:
"""Create a comprehensive incident report"""
report = self.incident_template.copy()
report.update(incident_data)
# Calculate duration
if report['start_time'] and report['end_time']:
report['duration'] = report['end_time'] - report['start_time']
# Add recommendations
report['recommendations'] = await self._generate_recommendations(report)
return report
async def _generate_recommendations(self, incident: Dict) -> List[str]:
"""Generate recommendations based on incident details"""
recommendations = []
# Add recommendations based on root cause
if 'rate_limit' in incident.get('root_cause', '').lower():
recommendations.extend([
'Implement better rate limiting monitoring',
'Add request queuing system',
'Distribute load across multiple API keys'
])
if 'network' in incident.get('root_cause', '').lower():
recommendations.extend([
'Add network redundancy',
'Implement circuit breakers',
'Add multiple provider endpoints'
])
if 'authentication' in incident.get('root_cause', '').lower():
recommendations.extend([
'Implement API key rotation',
'Add credential monitoring',
'Set up automated key refresh'
])
return recommendations
2. Preventive Measures Implementation
class PreventiveMeasures:
def __init__(self):
self.measures = {
'monitoring': [
'Enhanced health checks',
'Real-time alerting',
'Performance monitoring'
],
'redundancy': [
'Multiple provider setup',
'Geographic distribution',
'Backup systems'
],
'automation': [
'Automated failover',
'Self-healing systems',
'Automated recovery'
]
}
async def implement_preventive_measures(self, incident_report: Dict):
"""Implement preventive measures based on incident"""
recommendations = incident_report.get('recommendations', [])
implemented_measures = []
for recommendation in recommendations:
if 'monitoring' in recommendation.lower():
implemented_measures.extend(self.measures['monitoring'])
elif 'redundancy' in recommendation.lower():
implemented_measures.extend(self.measures['redundancy'])
elif 'automation' in recommendation.lower():
implemented_measures.extend(self.measures['automation'])
# Remove duplicates
implemented_measures = list(set(implemented_measures))
# Create implementation plan
implementation_plan = {
'measures': implemented_measures,
'priority': 'high' if incident_report.get('severity') in ['critical', 'high'] else 'medium',
'estimated_effort': len(implemented_measures) * 2, # days
'resources_needed': ['engineering', 'operations']
}
return implementation_plan
Best Practices
- Prepare in Advance: Have runbooks and procedures ready before incidents occur
- Automate Detection: Use automated monitoring to detect issues early
- Test Failover: Regularly test your failover procedures
- Document Everything: Keep detailed records of all incidents and resolutions
- Communicate Proactively: Keep stakeholders informed throughout the incident
- Learn from Incidents: Conduct post-mortems and implement preventive measures
- Monitor Continuously: Implement comprehensive monitoring and alerting
- Have Backup Plans: Always have multiple fallback options
Conclusion
Effective handling of AI model downtime requires preparation, quick response, and systematic troubleshooting. By implementing these procedures and best practices, you can minimize the impact of downtime and ensure quick recovery when issues occur.
The key is to have a well-defined incident response process, automated detection and recovery systems, and clear communication procedures in place before incidents happen.