Load Balancing for AI Models

Master load balancing strategies for AI models. Learn algorithms, implementation patterns, and best practices for distributing AI requests across multiple providers.

Load balancing is crucial for distributing AI model requests across multiple providers, ensuring optimal performance, cost efficiency, and reliability.

Why Load Balancing Matters for AI Models

  • Performance: Distribute load to prevent bottlenecks
  • Cost Optimization: Route requests to cost-effective providers
  • Reliability: Avoid overwhelming single providers
  • Scalability: Handle increased traffic efficiently

Load Balancing Strategies

1. Round-Robin Load Balancing

Distribute requests evenly across all available providers:

class RoundRobinLoadBalancer:
    def __init__(self, providers: List[str]):
        self.providers = providers
        self.current_index = 0
        self.lock = asyncio.Lock()
    
    async def get_next_provider(self) -> str:
        """Get next provider in round-robin fashion"""
        async with self.lock:
            provider = self.providers[self.current_index]
            self.current_index = (self.current_index + 1) % len(self.providers)
            return provider
    
    async def generate_text(self, prompt: str, model: str) -> str:
        """Generate text using round-robin load balancing"""
        provider = await self.get_next_provider()
        return await self._call_provider(provider, prompt, model)

## Usage
providers = ['openai', 'anthropic', 'google', 'together']
balancer = RoundRobinLoadBalancer(providers)
result = await balancer.generate_text("Hello, world!")

2. Weighted Round-Robin

Assign different weights to providers based on capacity or cost:

class WeightedRoundRobinLoadBalancer:
    def __init__(self, providers_with_weights: Dict[str, int]):
        self.providers = []
        self.weights = []
        
        # Expand providers based on weights
        for provider, weight in providers_with_weights.items():
            for _ in range(weight):
                self.providers.append(provider)
        
        self.current_index = 0
        self.lock = asyncio.Lock()
    
    async def get_next_provider(self) -> str:
        """Get next provider with weighted distribution"""
        async with self.lock:
            provider = self.providers[self.current_index]
            self.current_index = (self.current_index + 1) % len(self.providers)
            return provider

## Usage - OpenAI gets 3x the traffic, others get 1x
providers_with_weights = {
    'openai': 3,
    'anthropic': 1,
    'google': 1,
    'together': 1
}
balancer = WeightedRoundRobinLoadBalancer(providers_with_weights)

3. Least Connections Load Balancing

Route requests to the provider with the fewest active connections:

class LeastConnectionsLoadBalancer:
    def __init__(self, providers: List[str]):
        self.providers = providers
        self.active_connections = {provider: 0 for provider in providers}
        self.lock = asyncio.Lock()
    
    async def get_next_provider(self) -> str:
        """Get provider with least active connections"""
        async with self.lock:
            # Find provider with minimum connections
            min_connections = min(self.active_connections.values())
            available_providers = [
                p for p, conns in self.active_connections.items()
                if conns == min_connections
            ]
            
            # If multiple providers have same connections, choose randomly
            provider = random.choice(available_providers)
            self.active_connections[provider] += 1
            return provider
    
    async def release_connection(self, provider: str):
        """Release a connection when request completes"""
        async with self.lock:
            self.active_connections[provider] = max(0, self.active_connections[provider] - 1)
    
    async def generate_text(self, prompt: str, model: str) -> str:
        """Generate text using least connections load balancing"""
        provider = await self.get_next_provider()
        try:
            result = await self._call_provider(provider, prompt, model)
            return result
        finally:
            await self.release_connection(provider)

4. Response Time Load Balancing

Route requests to the fastest responding provider:

import statistics
import time

class ResponseTimeLoadBalancer:
    def __init__(self, providers: List[str]):
        self.providers = providers
        self.response_times = {provider: [] for provider in providers}
        self.lock = asyncio.Lock()
    
    async def get_next_provider(self) -> str:
        """Get provider with best average response time"""
        async with self.lock:
            provider_scores = {}
            
            for provider in self.providers:
                times = self.response_times[provider]
                if times:
                    avg_time = statistics.mean(times)
                    provider_scores[provider] = avg_time
                else:
                    provider_scores[provider] = float('inf')
            
            # Return provider with lowest average response time
            return min(provider_scores, key=provider_scores.get)
    
    async def record_response_time(self, provider: str, response_time: float):
        """Record response time for a provider"""
        async with self.lock:
            self.response_times[provider].append(response_time)
            # Keep only last 100 measurements
            if len(self.response_times[provider]) > 100:
                self.response_times[provider].pop(0)
    
    async def generate_text(self, prompt: str, model: str) -> str:
        """Generate text using response time load balancing"""
        provider = await self.get_next_provider()
        start_time = time.time()
        
        try:
            result = await self._call_provider(provider, prompt, model)
            return result
        finally:
            response_time = time.time() - start_time
            await self.record_response_time(provider, response_time)

5. Cost-Based Load Balancing

Route requests to the most cost-effective provider:

class CostBasedLoadBalancer:
    def __init__(self, providers: List[str]):
        self.providers = providers
        self.cost_per_token = {
            'openai': {'gpt-4': 0.03, 'gpt-3.5-turbo': 0.002},
            'anthropic': {'claude-3-opus': 0.015, 'claude-3-sonnet': 0.003},
            'google': {'gemini-pro': 0.001},
            'together': {'llama-2-7b': 0.0003}
        }
    
    def estimate_tokens(self, prompt: str) -> int:
        """Estimate number of tokens in prompt"""
        return len(prompt.split()) * 1.3
    
    def calculate_cost(self, provider: str, model: str, prompt: str) -> float:
        """Calculate estimated cost for a request"""
        tokens = self.estimate_tokens(prompt)
        cost_per_1k = self.cost_per_token.get(provider, {}).get(model, 0.01)
        return (tokens / 1000) * cost_per_1k
    
    async def get_next_provider(self, prompt: str, model: str) -> str:
        """Get most cost-effective provider"""
        costs = {}
        
        for provider in self.providers:
            cost = self.calculate_cost(provider, model, prompt)
            costs[provider] = cost
        
        return min(costs, key=costs.get)
    
    async def generate_text(self, prompt: str, model: str) -> str:
        """Generate text using cost-based load balancing"""
        provider = await self.get_next_provider(prompt, model)
        return await self._call_provider(provider, prompt, model)

Advanced Load Balancing Features

1. Health-Aware Load Balancing

Combine load balancing with health monitoring:

class HealthAwareLoadBalancer:
    def __init__(self, providers: List[str]):
        self.providers = providers
        self.health_status = {provider: True for provider in providers}
        self.response_times = {provider: [] for provider in providers}
        self.error_rates = {provider: 0.0 for provider in providers}
    
    async def get_next_provider(self) -> str:
        """Get healthy provider with best performance"""
        healthy_providers = [
            p for p in self.providers 
            if self.health_status[p]
        ]
        
        if not healthy_providers:
            raise Exception("No healthy providers available")
        
        # Score providers based on performance and error rate
        provider_scores = {}
        for provider in healthy_providers:
            avg_response_time = statistics.mean(self.response_times[provider]) if self.response_times[provider] else 1.0
            error_rate = self.error_rates[provider]
            
            # Score = 1 / (response_time * (1 + error_rate))
            score = 1.0 / (avg_response_time * (1 + error_rate))
            provider_scores[provider] = score
        
        return max(provider_scores, key=provider_scores.get)
    
    async def record_metrics(self, provider: str, response_time: float, success: bool):
        """Record performance metrics"""
        self.response_times[provider].append(response_time)
        if len(self.response_times[provider]) > 100:
            self.response_times[provider].pop(0)
        
        # Update error rate
        if not success:
            self.error_rates[provider] = min(1.0, self.error_rates[provider] + 0.01)
        else:
            self.error_rates[provider] = max(0.0, self.error_rates[provider] - 0.001)
        
        # Mark as unhealthy if error rate is too high
        if self.error_rates[provider] > 0.1:
            self.health_status[provider] = False

2. Adaptive Load Balancing

Dynamically adjust load balancing based on real-time metrics:

class AdaptiveLoadBalancer:
    def __init__(self, providers: List[str]):
        self.providers = providers
        self.metrics = {provider: {
            'response_time': [],
            'error_rate': 0.0,
            'throughput': 0,
            'cost_per_request': 0.0
        } for provider in providers}
        self.weights = {provider: 1.0 for provider in providers}
    
    async def update_weights(self):
        """Update provider weights based on performance"""
        for provider in self.providers:
            metrics = self.metrics[provider]
            
            # Calculate performance score
            avg_response_time = statistics.mean(metrics['response_time']) if metrics['response_time'] else 1.0
            error_rate = metrics['error_rate']
            throughput = metrics['throughput']
            
            # Performance score = throughput / (response_time * (1 + error_rate))
            performance_score = throughput / (avg_response_time * (1 + error_rate))
            
            # Update weight based on performance
            self.weights[provider] = max(0.1, performance_score)
    
    async def get_next_provider(self) -> str:
        """Get provider using adaptive weights"""
        # Update weights periodically
        await self.update_weights()
        
        # Select provider based on weights
        total_weight = sum(self.weights.values())
        random_value = random.uniform(0, total_weight)
        
        current_weight = 0
        for provider, weight in self.weights.items():
            current_weight += weight
            if random_value <= current_weight:
                return provider
        
        return self.providers[0]  # Fallback

Implementation Example

class ProductionAILoadBalancer:
    def __init__(self):
        self.providers = ['openai', 'anthropic', 'google', 'together']
        self.balancer = HealthAwareLoadBalancer(self.providers)
        self.circuit_breakers = {p: CircuitBreaker() for p in self.providers}
    
    async def generate_text(self, prompt: str, model: str, strategy: str = 'health_aware') -> str:
        """Generate text with configurable load balancing strategy"""
        
        if strategy == 'round_robin':
            balancer = RoundRobinLoadBalancer(self.providers)
        elif strategy == 'least_connections':
            balancer = LeastConnectionsLoadBalancer(self.providers)
        elif strategy == 'response_time':
            balancer = ResponseTimeLoadBalancer(self.providers)
        elif strategy == 'cost_based':
            balancer = CostBasedLoadBalancer(self.providers)
        else:
            balancer = self.balancer  # Default to health-aware
        
        provider = await balancer.get_next_provider()
        
        # Use circuit breaker for the selected provider
        circuit_breaker = self.circuit_breakers[provider]
        
        async def call_provider():
            return await self._call_provider(provider, prompt, model)
        
        return await circuit_breaker.call(call_provider)

## Usage
balancer = ProductionAILoadBalancer()

## Use different strategies
result1 = await balancer.generate_text("Hello", "gpt-4", "round_robin")
result2 = await balancer.generate_text("Hello", "gpt-4", "cost_based")
result3 = await balancer.generate_text("Hello", "gpt-4", "health_aware")

Best Practices

  1. Monitor Performance: Track response times, error rates, and costs
  2. Use Health Checks: Don’t route to unhealthy providers
  3. Implement Circuit Breakers: Prevent cascading failures
  4. Test Different Strategies: Choose the best strategy for your use case
  5. Adapt to Changes: Update load balancing based on real-time metrics
  6. Handle Failures Gracefully: Always have a fallback plan

Conclusion

Load balancing for AI models is essential for optimal performance and reliability. Start with simple round-robin and gradually implement more sophisticated strategies like health-aware and adaptive load balancing as your needs grow.

The key is to monitor performance metrics and adjust your load balancing strategy based on real-world usage patterns.

← Back to Learning Center